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Abstract

The recovery of a distributed parameter function with discontinuities from inverse problems with elliptic forward PDEs
is fraught with theoretical and practical difficulties. Better results are obtained for problems where the solution may take
on at each point only one of two values, thus yielding a shape recovery problem.

This article considers level set regularization for such problems. However, rather than explicitly integrating a time
embedded PDE to steady state, which typically requires thousands of iterations, methods based on Gauss–Newton are
applied more directly. One of these can be viewed as damped Gauss–Newton utilized to approximate the steady state equa-
tions which in turn are viewed as the necessary conditions of a Tikhonov-type regularization with a sharpening sub-step at
each iteration. In practice this method is eclipsed, however, by a special ‘‘finite time’’ or Levenberg–Marquardt-type
method which we call dynamic regularization applied to the output least squares formulation. Our stopping criterion
for the iteration does not involve knowledge of the true solution.

The regularization functional is applied to the (smooth) level set function rather than to the discontinuous function to
be recovered, and the second focus of this article is on selecting this functional. Typical choices may lead to flat level sets
that in turn cause ill-conditioning. We propose a new, quartic, non-local regularization term that penalizes flatness and
produces a smooth level set evolution, and compare its performance to more usual choices.

Two numerical test cases are considered: a potential problem and the classical EIT/DC resistivity problem.
� 2006 Published by Elsevier Inc.
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1. Introduction

Consider the following data inversion problem. A forward operator, F(m), is given, and a model m(x) is
sought over a discretized domain X in 2D or 3D, such that F(m) matches given data b up to the noise level
in the data measurements. The forward model is further given by
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F ðmÞ ¼ Qu; ð1aÞ
u ¼ GðmÞ; ð1bÞ
where Q is a matrix which projects to data locations (e.g., along the boundary oX), and G(m) is the inverse of
an elliptic PDE system discretized on a grid at least as fine as that of m using a finite volume or finite element
method.

Several applications give rise to such a problem formulation. These include DC resistivity [35], linear poten-
tial problems [23,7], magnetotelluric inversion [30], diffraction tomography [12], oil reservoir simulation [14]
aquifer calibration [17], electrical impedance tomography (EIT) [5,10,6], and Maxwell’s equations in low fre-
quencies [26,27,20,21].

It is well-known that while the forward problem (1) is well-posed the inverse problem is not. Indeed, the
applications mentioned above and those considered in this article are highly ill-posed. In practice for the avail-
able noisy data typically there is no unique solution, i.e., there are many models m which yield a field u such
that Qu is close to b to within the noise level, and moreover, such models m may vary wildly and depend dis-
continuously on the data. A direct application of the output least squares method, which is to solve the opti-
mization problem
min
m

/0 ¼
1

2
kF ðmÞ � bk2 ð2Þ
using the least squares norm of the data fitting term, typically runs into trouble. In a Tikhonov-type regular-
ization [36], therefore, one approximately solves the optimization problem
min
m

/b ¼
1

2
kF ðmÞ � bk2 þ bRðmÞ; ð3Þ
where R(m) is a regularization term, and b > 0 is the regularization parameter whose choice has been the sub-
ject of many papers (see, e.g., [37]).

For the regularization term, we have considered in previous articles a same-grid discretization of
RðmÞ ¼
Z

X
ðqðj$mjÞ þ âðm� mrefÞ2Þdx; ð4Þ
where â is a (typically very small, positive) parameter and mref is a given reference function (typically, the half-
space solution). A least squares regularization is achieved by choosing qðsÞ ¼ 1

2
s2, although we have used also

a weighted least squares penalty function, see [19,1,2,21,4].
However, the least squares functional is well-known to be unsuitable if a priori information that the

model m contains discontinuities is to be respected. Total variation regularization has been proposed
and successfully applied to denoising and mildly ill-posed problems such as deblurring [31]. In [4,3], we
have discussed and developed further the use of modified total variation (TV), or (occasionally slightly
better) Huber switching between TV and least squares. But we also demonstrated that these methods
may fail when applied to highly ill-posed problems such as those considered in this article. Specifically,
examples showed that simply trusting the reconstruction because the data misfit is small cannot be advo-
cated, even if the discrepancy principle is obeyed and even under the unrealistic assumption that data is
available everywhere. It can then be argued that displaying a smooth blob, such as when using weighted
least squares regularization, is less committing and more truthful to the quality of the actual information
at hand than displaying a discontinuous solution. For recovering sharp discontinuous solutions more a
priori information is required.

Such additional information is available if we know that the model function m(x) is piecewise constant. In
fact, let us assume in this article that m may only take on one of two known values, m1 and m2 (say, a homo-
geneous body and a homogeneous background). The problem becomes that of shape optimization, and a level
set approach [34,29,8] for incorporating this additional information is natural.

Following [32,24,18] and others we consider m(x) as a function of a smoother one w(x) and apply regular-
ization to w,
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min
w

/ ¼ 1

2
kF ðmÞ � bk2 þ bRðwÞ; ð5aÞ

m ¼ vðwÞ. ð5bÞ
The function v is (a grid-smoothing of) the characteristic function based on the values that m may take. We
choose, e.g.,
vðsÞ ¼ m1 � m2

2
tanhðs=hÞ þ m1 þ m2

2
. ð5cÞ
Note that v depends on the grid resolution h, and
lim
h!0

vðsÞ ¼
m2; s < 0;

m1; s > 0.

�

Thus, sharpening happens across the 0-level set of w(x).
Selecting the regularization functional R is one focus of the present paper. The regularization should cap-

ture the idea that w is smooth, but it should not be too flat near its 0-level, so that the interface will not change
significantly upon a minor perturbation in w. We consider the form
RðwÞ ¼ bRðj$wjÞ þ aRTVðj$mjÞ ð6Þ

with RTV a suitably modified version (e.g., [31,4]) of
RTV ¼
Z

X
j$mðwÞjdx ð7Þ
penalizing the length of the level set interface [16,9,11], and a P 0 is yet another parameter to be selected. The
choice of bR is considered in Section 2. In addition to the usual quadratic term we end up recommending a non-
local quartic term which mildly and smoothly penalizes the distance of j$wj from the value 1 and appears to
produce a smoother level set evolution.

More usual level set formulations appear in the literature as a function of (artificial) time. In fact, already
the formulation (3) can be generalized as follows: denoting the sensitivity matrix J ¼ oF

om, the necessary condi-
tions for the optimization problem (3) can be written as the steady state equations for the time-dependent
problem
MðmÞ om
ot
¼ �½J TðF ðmÞ � bÞ þ bR0ðmÞ�;

mð0Þ ¼ m0;

ð8Þ
where t P 0 is the artificial time variable and the preconditioner M is positive definite. A forward Euler dis-
cretization of (8) with a special choice of time step in fact coincides with a preconditioned steepest descent
method for (3). However, these methods as such are not known for their efficiency. It is more important to
realize that special cases such as M = I, b = 0, and M = bI, b!1, have regularizing effects for a finite time,
i.e., without reaching the steady state solution (see, e.g., [37]). These choices (as well as M = 0 and others
where M involves an anisotropic term) have all been considered in practice and yield various instances of Tik-
honov-type regularization and scale space methods [33,24,16]. We prefer the interpretation (8) and (9) over the
connection made in these references between the different resulting methods.

The method described in (5) now generalizes into
MðwÞ ow
ot
¼ �½bJ TðbF ðwÞ � bÞ þ bR0ðwÞ�;

wð0Þ ¼ w0;

ð9Þ
where we set
bF ðwÞ ¼ F ðmðwÞÞ; bJ ðwÞ ¼ obF
ow
¼ Jv0. ð10Þ
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Variants of this have been considered in [13,16,9] and elsewhere. We caution, however, that in some such ap-
proaches involving explicit discretization of the time-dependent PDE thousands of iterations (or time steps)
are required before convergence is deemed to have been achieved, often by unclear criteria.

In the present article we consider two techniques that can be viewed as modifications of the Gauss–Newton
method (see, e.g., [28]). In the first, we apply a damped Gauss–Newton method for the solution of (5). In other
words, we solve directly for the steady state of (9) with a positive b, rather than following the dynamics of the
time-dependent system. Convergence is typically obtained in 20 iterations and less. Implementation issues and
results are discussed in Section 4.

Unfortunately, the relatively large magnitude of the updates implied by the small number of iterations often
causes the method to ‘‘overshoot’’: In experiments where we know the true solution we typically observe a
rapid approach towards that solution which is not followed by clearly indicated convergence. The question
of how to stop such an iterative procedure (for problems where we do not know the true solution!) becomes
tricky to resolve.

Better results in the latter respect are obtained by a different, dynamic regularization approach: Starting with
the output least squares formulation, i.e., (5) with b = 0, we apply a damped Levenberg–Marquardt version of
the Gauss–Newton method, with the iteration regularized by the Hessian of the same operators bR as above.
This iteration is carried out only to ‘‘finite time’’ in the language of (9); indeed, the method can be viewed as an
instance of (9) with b = 0 and M given by (27) below. Its advantage in practice is that typically / decreases
consistently until some point where the iteration starts stalling, whereby the solution process can be reason-
ably stopped. In general, theory for level set methods for our inverse problems is currently in an unsatisfactory
state, and the present article does nothing to improve upon this, but our computational effort consistently
yields pleasing results using this dynamic regularization. We elaborate on it further in Section 3.

In Section 4.1, we describe our implementation of the methods. Following the development of suitable algo-
rithms we present the results of two experiments supporting our findings. The first, described in Section 4.2,
involves a simple looking potential problem [23,16] which still yields tough inverse problems. The typical total
running time for our method is well below 10 s, and that is significantly faster than solving the forward prob-
lem for thousands of steps. The second, described in Section 4.3, involves a multi-source experiment for a non-
linear DC resistivity problem. Conclusions detailing our contributions are offered in Section 5.

2. Tikhonov regularization

At first, let us note that the problem
3 No
those
metho
bF ðwÞ ¼ b ð11Þ

in the continuum limit (h! 0) is invariant under the transformation w(x)! k(x)w(x) for any continuous,
bounded, positive (or negative) function k(x). Therefore, even if the original problem F(m) = b were well-
posed, the level set formulation (11) is not.3

Let us rewrite (5) as
min
w

/ ¼ /eðwÞ þ bRðwÞ; ð12aÞ

/e ¼
1

2
kbF ðwÞ � bk2. ð12bÞ
For a suitable regularization functional R the parameter b must be appropriately tuned for the problem at
hand, for example using the discrepancy principle or by error-free methods [15]. The choice of R is usually
aided by a priori knowledge about the system. Since the level set formulation inherently has a large null-space,
reflecting the fact that only the 0-level set plays a role in the problem, an additional role of R now is to remove
this null-space, thereby shaping the level set function w in some desirable form. A common goal is to approx-
imate a signed distance function.
te that sometimes in the literature the term ‘‘level set method’’ implies the use of a signed distance function. Other methods such as
based on a double well-potential in w are sometimes called phase-field methods; see, for instance [8]. In this paper, we call any
d that uses the 0-level set of a function to describe a boundary a ‘‘level set method’’.
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A well-used choice for bR is the discretized form of
bR2 ¼
1

2

Z
X
j$wj2 dx. ð13Þ
However, while this term penalizes excessive roughness it also encourages flat level set functions, which may
cause m to change drastically upon a small change in w.

It has been suggested by various authors (e.g., [16,9]) to add to this regularization operator bR2 a term whose
gradient depends on curvature, as in (6). In particular, the (modified) total variation term (7) penalizes the
length of the level set interface. Note that we cannot have just (7) by itself as regularizer, because (7) depends
explicitly only on the interface and therefore does not remove the level set null-space. Unfortunately, this
means that we now have another parameter a besides b to choose.

The motivation for adding a term (7) to bR2 is to penalize fragmentation of the recovered shape. Another
reason is to regularize the inverse problem itself, rather than just the level set formulation with its large
null-space. While it is not always clear that this is really necessary for the quadratic term (13), the quartic reg-
ularization term introduced below has a minimum which is independent of the 0-level set of w and will there-
fore need additional regularization, possibly by a term of the form (7).

Both bR2 and RTV have a drawback in that they admit very flat functions w which may hover around the 0-
level (that determines the interface). The usual technique for preventing flatness of the level set is to period-
ically restart the iterative procedure to evolve the level set function re-initializing w to be approximately a
signed distance function [29]. The iterative methods we describe here usually require just a few iterations, how-
ever, and therefore we seek a regularization term that achieves the dual goals of regularizing the ill-posed
problem and of encouraging the level set function to vary smoothly and not be flat near the interface.

An ‘‘ideal’’ level set function is a signed distance function, and will have j$wðxÞj ¼ 1 almost everywhere. A
natural choice for bR may therefore seem to be the quartic penalty form
bR4 ¼
1

2

Z
X
ð1� j$wj2Þ2 dx. ð14Þ
In practice we have found that (14) sometimes works, provided one is extremely careful with the discretization
procedure, but there are several reasons why it is not entirely satisfactory. First, in order to converge to a par-
ticular solution starting from some initial configuration, (14) may prevent w from moving from a configura-
tion with, say, one connected region, to a configuration with two regions, because artificial potential barriers
are created. Indeed, one may argue that we should add (14) to the objective function with a large coefficient b,
effectively trying to solve the problem with the added constraint j$wj ¼ 1. However, this constraint makes it
very difficult, and occasionally impossible in our experiments, to find the minimum of the objective function
since we are quite limited in updates we can make to w. Even if convergence is obtained, a relatively large num-
ber of iterations is required to pass the artificial potential barrier.

Second, the discretization picks up spurious terms at the locations where w changes direction, which hap-
pens at the points that are equidistant from two or more 0-level sets. At such points $w has a discontinuity
that, unless miraculously aligned with the grid, introduces spurious contributions into the objective function
/. During the optimization procedure these contributions may push the field w in the wrong direction, thereby
denying smooth convergence to the solution.

Finally, (14) is more difficult to handle from an implementation perspective, since it is non-convex. The
Hessian of (14) is given by
bH 4 ¼ 2
X
x2Xh

ðwTLxw� 1ÞLx þ 4
X
x2Xh

ðLxwÞðLxwÞT ð15Þ
with w a function on the grid Xh reshaped as a vector. The positive definite, local grid operator Lx is con-
structed such that wTLxw is the discretized form of j$wðxÞj2 for each grid point x. A sufficient, though not
necessary, condition for the positive definiteness of the Hessian (15) is
wTLxw > 1 8x 2 Xh. ð16Þ

Clearly this Hessian is more complicated than the Hessian of bR2, which is just the discrete Laplacian.
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Since the insistence on j$wðxÞj ¼ 1 at every point x is just to prevent difficulties due to flat level set func-
tions hovering around zero, we can certainly afford to relax this requirement somewhat and try to encourage w
to behave well only in an average sense. Thus, we really only want
Z

X
Kðx� yÞj$wðyÞj2 dy ¼ 1; ð17Þ
where K(x) is a smearing function (a Gaussian for example) with some support to be determined empirically.
Our regularization term now becomes
1

2

Z
X

Z
X
ð1� j$wðxÞj2ÞbK ðx� yÞð1� j$wðyÞj2Þdxdy ð18Þ
with bK the convolution of K with itself.
If we choose a Dirac delta function for K(x) then (14) is recovered. At the other extreme where we smear

over the entire domain, i.e., K(x) = 1/|X| with |X| = volume(X), we obtain the regularization term
bR4n ¼
1

2

Z
X
ð1� j$wj2Þdx

� �2

. ð19Þ
This penalizes flatness in w only in the average sense, and yet it proves to be quite effective in our experiments
as described in Section 4.4. In fact, the best results in our experiments have been obtained with this non-local
term (19). The Hessian of (19) is
bH 4n ¼ 2ðwTLw� jXjÞLþ 4ðLwÞðLwÞT ð20Þ
with L ¼ bH 2 a positive definite matrix based on the standard 5-point discrete Laplacian. A sufficient condition
for bR4n to be positive definite is that
wTLw > jXj. ð21Þ

This is a much milder condition than the pointwise condition (16). In our experiments negative eigenvalues of
the Hessian were never encountered during the iteration, so long as the initial w satisfies (21).

Note that both quartic terms have minima which are independent of the 0-level set, in the continuum,
because any interface can be described as the 0-level set of a signed distance function which hasbR4n ¼ bR4 ¼ 0. This implies that additional regularization is required for the interface problem, which can
be achieved through a term RTV or through dynamic regularization as discussed following (8) and in Section
3 below.

As detailed in Section 4, we have observed experimentally that quite frequently a very good solution (as
judged by the eye norm) is obtained after a few iterations, especially using (6) with bR4n and also with bR2.
But detecting where to stop the iteration without the aid of the true solution is hard; upon continuing to iterate
the solution overshoots, and the actual solution to the minimization problem (12) is not as good. If b and/or a
are too small the solution overshoots by fitting the model to the noise. If they are too large, the solution over-
shoots by being pushed in the wrong direction by the regularization term. At the experimentally ‘‘optimal’’ b
and a, with which the solution converges with a misfit as dictated by the discrepancy principle, we have
observed that usually a much better solution is obtained before convergence, but with a misfit larger than dic-
tated by the discrepancy principle. In addition, considerable fine-tuning of the additional parameter a is occa-
sionally required to obtain the best fit, which is an uncertain procedure since all we have to go on is the misfit.

We observe in summary that a Tikhonov regularization of the error functional leaves something to be
desired in the present context.

3. Dynamic regularization

Let us consider the minimization problem (12) with b = 0. Instead of the regularization term bR, we now
rely on the ‘‘finite time’’ corresponding to the limited number of iterations defined below to provide the reg-
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ularization effect. The approach is similar to what is called iterative regularization in [15,33,25]. The most com-
mon stopping criterion is again the discrepancy principle. The usual criticism against this approach, namely,
that it does not take a priori information into account in the same essential way that a Tikhonov-type regu-
larization can, is muted in our level set setting for a shape optimization problem as described in the closing
paragraphs of the previous section.

The Levenberg–Marquardt approach linearizes bF ðwÞ in /e and adds a penalty b0dwTXdw ¼ b0kdwk2
X to the

equations for the update dw, with X some appropriate positive definite matrix. Let us write
geðwÞ ¼
o/e

ow
¼ bJ TðwÞðbF ðwÞ � bÞ
and
He ¼ bJ TbJ ; ð22Þ

which is the Gauss–Newton approximation to the Hessian of /e. We assume here that the problem has been
discretized on an N · N grid so that w is represented by a grid function which can be reshaped into an N2-vec-
tor. With this notation the Levenberg–Marquardt method defines the updates for w by the equation
ðHeðwÞ þ b0X ðwÞÞdw ¼ �cgeðwÞ; ð23Þ

where X and b0 are to be chosen, and < c 6 1 is a damping parameter determined by line search. Certain
choices for X were considered in [7] in a somewhat different algorithmic framework. Specifically, a Hamil-
ton–Jacobi sub-step is required at each iteration of [7] and our best choice for X, which turns out to be
(20), is not considered there.

The parameter b0 has a purely algebraic role here in ensuring that the eigenvalues of the resulting matrix are
bounded away from 0. The result therefore should not be very sensitive to the choice of b0. Note that b0 is con-
sidered to be constant, whereas the usual trust-region based Levenberg–Marquardt technique adaptively
chooses b0 at each iteration (with c = 1) depending on the assessed region where the local linearized model
can be trusted. Here, X has the function of removing the large near null-space of He. Perhaps a better interpre-
tation of (23) is simply as a regularized version of the damped Gauss–Newton method.

Comparing this to the update rule for a damped Gauss–Newton scheme for the Tikhonov regularized prob-
lem (12) which reads
ðHeðwÞ þ bR00ðwÞÞdw ¼ �cðgeðwÞ þ bR0ðwÞÞ; ð24Þ

it is tempting to choose X = R00 in (23) and interpret R(w) in a similar fashion as in the Tikhonov regulariza-
tion. This interpretation is justified because we can interpret the iterative scheme (23) as the steps in a pertur-
bation series expansion around the minimum of the Tikhonov functional (12) at b0 towards b = 0, as
described in the following section.

Suppose for a moment that we know the solution, denoted by w0, to (12) for a particular value of b = b0.
For example, b0 may be a value which is large enough such that the problem is sufficiently regularized to be
smooth and well-behaved. We now write the solution for generic b (thought of as being ‘‘close’’ to b0) as a
power series in b � b0. Using standard methods we can write
w ¼ w0 þ
X1
i¼1

ðb� b0Þ
iyi
with yi to be determined. Define also
wk ¼ w0 þ
Xk

i¼1

ðb� b0Þ
iyi.
We can interpret wk as being the solution to (12) accurate to order k in (b � b0). Next, impose the optimality
condition
o/e

ow
¼ 0
on wk, keeping only terms to order k:
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geðwkÞ þ ðb� b0ÞR0ðwkÞ þ b0R0ðwkÞ ¼ 0. ð25Þ
Using Taylor’s expansion up to linear terms on (25) and keeping again only terms to order k,
geðwk�1Þ þ Heðwk�1Þðwk � wk�1Þ þ ðb� b0ÞR0ðwk�1Þ þ b0R0ðwk�1Þ þ b0R00ðwk�1Þðwk � wk�1Þ ¼ 0;
which can be rewritten (bumping k up by 1 for notational ease) as an iterative scheme:
ðH eðwkÞ þ b0R00ðwkÞÞðwkþ1 � wkÞ ¼ �ðgeðwkÞ þ bR0ðwkÞÞ. ð26Þ
For b = 0 we obtain the Levenberg–Marquardt scheme (23) with X = R00, c = 1.
Another connection between X in (23) and R00 in (24) can be made by considering again a solution w to (12)

for a given b and deriving an ODE for w as a function of t = b�1. Multiplying / by t, the necessary conditions
for optimality in (12a) are
tge þ R0 ¼ 0.
Differentiating with respect to t and then dividing by it gives
ðH e þ bR00Þ ow
ot
þ bge ¼ 0.
A forward Euler discretization with step size s gives the update rule
ðH e þ bR00Þdw ¼ �sbge;
and this yields (23) upon setting X = R00, b = b0 and s = c/b0. Note again that b0 need not be small and that t,
hence s, can be stretched arbitrarily. Note also that the differential system ðHe þ b0R00Þ ow

ot ¼ �ge is a special
case of (9) with b = 0 and
M ¼ H e þ b0R00. ð27Þ
On the other hand, our choice of the step size s has little to do with ODE methods.
In our experiments, as detailed in Section 4, the most remarkable difference from the Tikhonov regulariza-

tion of Section 2 is that with dynamic regularization no overshooting has occurred. Instead, the present
method appears to stall at just the right time, when the solution looks best according to the eye norm! Based
on this we propose a practical stopping criterion by monitoring the misfit
misfit ¼ kF ðmÞ � bk=kbk ð28Þ
and the reconstructed shapes, and stopping the iteration when the algorithm seems to have stalled, or when the
misfit drops below some small multiple l > 1 of the theoretically optimal value based on a known noise level of
the data, i.e., the discrepancy principle (see also [22]). Stalling occurs occasionally before the data misfit has
reached the critical value. In the Tikhonov case, too small a choice for l is a disaster as the solution will imme-
diately overshoot, but here it just means that the algorithm stalls and the misfit only decreases very slowly. If
we then continue for thousands of iterations the method will of course eventually overshoot, but this is pre-
vented by the ‘‘stalling’’ based stopping criterion.

An important additional advantage of the present algorithm is that there is no need for an interface penalty
term (7), as the ‘‘finite time’’ (i.e., the limited number of iterations) provides the necessary shape regulariza-
tion, so we set a = 0 in (6).
4. Numerical experiments

4.1. Implementation details

For simplicity the inverse problem is considered on a uniform, N · N grid. Our reported experiments use
N = 32, although we have experimented with N = 64 as well. The evaluation of the forward operator F of (1)
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uses the same N · N grid (except when generating artificial data, see below), although a finer grid can be easily
utilized instead.

For each modified Gauss–Newton iteration we have to solve a linear system of the form
ðbJ TbJ þ bR00Þdw ¼ �cp; ð29Þ
where p ¼ $/. For the line search procedure determining c we use a step-halving scheme and utilize the Wolfe
conditions to decide if sufficient decrease in / has been obtained [28].

We have
bJ ¼ obF
ow
¼ oF ðmÞ

om
ovðwÞ
ow

;

where ovðwÞ
ow is a grid-smoothed version of a Dirac delta function. Further, on the interface we apply threshold-

ing to give it a support of 4h with h the grid spacing. This makes the matrix bJ TbJ in (29) sparse. For R00 = L the
entire matrix in (29) is subsequently sparse. For R00 ¼ bH 4n of (20) there is an additional rank-1 term that is
dealt with as such using the Sherman–Morrison formula. With this, for small grids of up to 64 · 64 a direct
solution method using MATLAB’s backslash proves rather efficient: Some specific performance data are given
towards the end of Section 4.4. Note that the construction of bJ TbJ requires the solution of O(N) PDEs differing
only in their right hand sides (see, e.g., (34) below). This is done quite efficiently by a single sparse LU decom-
position followed by O(N) sparse forward and backward substitutions. In our implementation the assembly ofbJ TbJ þ bR00 takes typically 10 times longer than the solution of (29). The cost of a single iteration of this scheme
is not much higher (about 3–4 times more in our implementation) than the cost of a single step using a first
order method such as gradient descent, a method that typically requires thousands of iterations to yield sat-
isfactory results.

To generate data for the test problems described below we discretize the given PDE ((30) or (34)) on a finer
(2N � 1) · (2N � 1) grid. Solving for a ‘‘true model’’ m and downsampling back to an N · N grid gives u of
(1b). The purpose of the finer grid is to avoid so-called ‘‘inverse crimes’’. Then Q of (1a) is applied and the
result is sprinkled with Gaussian noise.

In the following, we present two test problems. This is followed in Section 4.4 by numerical results.

4.2. A potential problem

Here, we follow [16] in using a model problem from [23] to test and demonstrate our methods. Consider the
Poisson equation
Du ¼ m; x 2 X;

ujoX ¼ 0; ð30aÞ
where m is a characteristic function
mðxÞ ¼
m2; x 2 D;

m1; x 62 D

�
ð30bÞ
with m1 = 0, m2 = 1, and D � X = [0, 1]2.
The inverse problem is to recover the shape D from the normal derivative of u on the boundary, ½ou

om�oX. A
physical interpretation is for example the recovery of a mass distribution of a single material from measure-
ments of the gravitational field.

Note that for any given m of the form (30b) there is a unique u 2 H2(X) which satisfies (30a). Since u is two
derivatives smoother the inverse problem is highly ill-posed. For this problem, one set of Neumann data cor-
responding to the homogeneous Dirichlet case in (30a) furnishes as much information as the entire Dirichlet to
Neumann map [23], so no multiple data sets are used.

We discretize (30a) on a uniform grid with spacing h = 1/N, employing the most straightforward
discretization
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h�2½uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1 � 4ui;j� ¼ mi;j; 0 < i; j < N ð31Þ
and closing the system with the homogeneous Dirichlet BC. Denoting the resulting algebraic system
Dhu ¼ m
we have u ¼ D�1
h m.

For the normal derivative on the boundary we use forward differencing, hence the predicted data are the
values of �u/h at the (interior) grid points adjacent to the boundary. Denote these by Qu, with the resulting
Q a rather sparse, 4N · (N � 1)2 matrix. Thus, the forward problem is defined by
F ðmÞ ¼ QD�1
h m; hence J ¼ QD�1

h . ð32Þ
Note that F is linear in m. The additional fact that m may take on only two values must be dealt with (or
rather, taken into account) separately.

We now formulate the inverse problem in terms of a level set function w which is related to the field m by
m = v(w), cf. (5).
4.3. EIT and DC resistivity

The prototype forward PDE
r � ðr$uÞ ¼ q; x 2 X; ð33Þ
arises in many applications. We consider it in resistivity form on the unit square, X = [0,1]2, subject to natural
(homogeneous Neumann) boundary conditions, for multiple data sets qi, i = 1, . . . ,M. This reads
r � ðm�1$uiÞ ¼ qi; i ¼ 1; . . . ;M ;

oui

om
joX ¼ 0.

ð34Þ
The forward model is discretized on a staggered grid as described in [2], and the constant null-space is removed
in a standard way. The inverse problem is to recover m, which at each grid point takes on the values m1 = 1 or
m2 = 10, say, from measurements of ui on the boundary.

It is well-known that a single configuration for qi, corresponding physically to current sources injected into
the system, usually does not provide enough information to reconstruct m. Instead, in practical applications, a
number of different configurations for qi are set up and boundary data are measured for each configuration.
The more independent data we have, the better our chances for a faithful reconstruction are. In our example
we configure qi to consist of a positive point source on the left boundary and an opposite source on the right
boundary:
qiðxÞ ¼ dx;pi
L
� dx;pi

R
;

where pi
L and pi

R are located on the left and right boundaries. Different data sets are obtained by varying the
positions pi

L and pi
R of the two opposing sources. We place the left source at s equidistant points including the

corners, and similarly for the right source, in all possible combinations. This gives a total of M = s2 data sets.
Ignoring the piecewise constant property of m the resulting forward problem can again be clearly written as

F(m), where now F is a (smooth) nonlinear function of m.
4.4. Numerical results

Below is a representative sample of our experiments. First, we show the best reconstructions we were able to
obtain with the various methods. We have experimented with two data sets consisting of two and three squares
depicted in Fig. 1.



Fig. 1. The two data sets, or ‘‘true models’’, that were used in our experiments. The boundary data was polluted with 5% noise. We also
display the initial guess used by the iterative methods.
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We have tested the dynamic regularization and Tikhonov-type regularization with the quadratic and the
two quartic regularization terms. The local quartic term was generally found to be an inferior choice, because
the resulting Hessian is often plagued by negative eigenvalues: When these are removed by some ad hoc mod-
ification of the Hessian we are effectively no longer using bR4. Results are depicted in Fig. 2.

These results were obtained after carefully tuning parameters for all combinations of regularization
method, regularization functional, forward problem, and data set. The notation 3P2D refers to reconstructing
three squares for the potential problem, with the quadratic regularization term bR2 and dynamic regularization;
likewise, 2E4nT refers to reconstructing two squares for the EIT problem, with the non-local quartic regular-
ization bR4n using the Tikhonov-type approach, etc. The regularization parameter(s) are indicated below these
codes. The first refers to b (for Tikhonov) or b0 (for dynamic regularization), the second, only used for Tik-
honov, is a (see (6)). We also indicate the misfit, defined by (28), followed in parenthesis by its theoretical
expected value, which is controlled by an input noise level. For the EIT problem we used one data set for
the two squares problem and four data sets for the three squares problem, i.e., s = 1 or 2, respectively. For
the two squares EIT adding a non-zero a prevented any splitting of the initial configuration into separate
parts, so we set a = 0. No reasonable reconstruction could be obtained with any of the parameter choices
we have tried for the EIT problem with three squares using our Tikhonov-type program. Note that neither
theoretical nor empirical reasons would lead one to expect to be able to reconstruct the exact interface, even
with no noise.

To illustrate the noise sensitivity, we repeat experiments (d) and (m), i.e., the EIT problem with two squares
and the bR4n term employing dynamic and Tikhonov regularization, but now with 20% noise. Results are dis-
played in Fig. 3. The Tikhonov reconstruction has overshot its target, so b and possibly a must be increased to
prevent this. However, since the misfit is close to ideal there is no practical way to detect this disaster unless the
solution is known in advance. The dynamic reconstruction on the other hand has stalled after seven iterations
and does not change much anymore.

As explained in Section 2, one of the motivations for using the quartic regularization term is to discourage
flat level sets. We illustrate that this is a practical advantage in Fig. 4, where the level set functions resulting
from using bR2 and bR4n are depicted. Observe that the level set function of bR2 is flatter near the interface than
the one obtained using bR4n, which could be the reason for the better performance of the non-local quartic
term. However, we have also found many examples where neither function is particularly flat, and yet the
quartic term almost always leads to a smoother level set function.

To illustrate that the same value of b0 can be used at a wide range of noise levels, we show in Fig. 5 the
reconstruction of a non-convex shape with the potential problem inverted in the forward operator and
dynamic regularization employed at various noise levels from 1% up to 50%. Reducing the noise level below
1% does not result in any improvement in the reconstructed shape. Also, the misfit remains at about 0.17 when
the iterations stall in this case. Note that there is no reason to expect a precise reconstruction, even in theory:
for the potential problem, the model m(x) is not uniquely determined by boundary data. For example, the
gravitational far-field of a hollow sphere is the same as that of a smaller solid sphere of the same mass.



Fig. 2. Best reconstructions. In each subfigure caption the code dLeM describes the selection of true model, forward problem,
regularization term and regularization method; b and for Tikhonov also a follow; then misfit computed (theoretical); and finally the
number of iterations. No reasonable shape was obtained for 3E2T, 3E4nT, and 3E4T.
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In Fig. 6, we show the shape evolution utilizing dynamic regularization towards the solution depicted in
Fig. 2(f). It is smooth and orderly.

In Fig. 7, we illustrate the overshooting problem of the Tikhonov-type regularization. Visually, the recon-
struction looks best after four iterations. However, the misfit at this point gives no indication of success, so
there is no way we could stop the iteration at this point if we did not know the solution already. In contrast,
the solution with dynamic regularization depicted in Fig. 2(f) has stalled and does not overshoot in further
iterations.

Based on these results and on further numerical experimentation we conclude that in our setting:

1. The dynamic regularization produces better results than the Tikhonov-type regularization, as can been seen
by comparing the corresponding reconstructions in Fig. 2 (e.g., (d) vs. (m)). The iteration counts are gen-
erally smaller than those reported in [7], although they are of the same order of magnitude.



Fig. 3. EIT experiments with 20% noise and the same parameters as with 5% noise in Fig. 2. The dynamic reconstruction converges after
about seven iterations and does not overshoot.

Fig. 4. Level set functions for the dynamic regularization reconstruction of the three squares potential problem with the quadratic (left)
and non-local quartic terms (right). These correspond to the solutions (e) and (f) in Fig. 2. Observe the flatness generated by use of bR2 as
compared to the level set using bR4n.

Fig. 5. A non-convex shape reconstruction with dynamic regularization using the potential model at various noise levels for fixed
b0 = 1.e � 8. The non-local quartic form bR4n was used. The misfit (and theoretical value) and number of iterations are indicated. We also
show the actual (noisy curve) and the reconstructed boundary data. The forward fit of the predicted data is very good.
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Fig. 6. Shape evolution of the problem (f) of Fig. 2.
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2. The non-local quartic regularization term is often clearly superior to the usual quadratic term: compare, for
example Figs. 2(g) and (h). The quartic term produces better behaved level set functions as illustrated in
Fig. 4.

3. The local quartic term does not perform well in practice; see Fig. 2(n) for a typical example.

In addition, there are clear practical advantages for the dynamic regularization over the Tikhonov
approach. Specifically:

1. The RTV term is not needed: set a = 0.
2. The results are not very sensitive to b0 (cf. [22]), although more iterations are required if b0 is increased

significantly.
3. The iteration stalls at the appropriate time without overshooting. Since the explicit goal is shape reconstruc-

tion the use of the ‘‘eye-norm’’ to determine if the method has stalled or not is both practical and appro-
priate to the problems we are considering. A more rigorous and objective stopping criterion that is
somehow equivalent to the eye-norm would of course very useful but is not straightforward and falls out-
side the scope of this paper.

4. The same value of b0 can be used independent of the noise level.

For a 32 · 32 grid and one data set, one iteration typically requires 0.5 s in MATLAB on a 3 GHz Pentium IV
based desktop computer. Thus, many of the runs reported above require well below 10 s of total CPU time.



Fig. 7. Tikhonov frequently overshoots as illustrated here. We show the iterations for the potential problem with three squares using
Tikhonov with b = 1.e � 7, a = 1. The final misfit is 0.034, theoretical value 0.049. After four iterations, when the reconstruction looks
best, the misfit is 0.07. Compare with (f) and (p) in Fig. 2.
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For a 64 · 64 grid the CPU time per iteration is about 2 s. The iteration time varies somewhat as it depends on
the length of the interface, which influences the sparsity of the Hessian. The EIT problem on a 64 · 64 grid
with 4 data sets requires about 5 s per iteration. Of this, 78% is spent in assembling the Hessian and the gra-
dient, and 5% is spent in solving (29).
5. Conclusions and further thoughts

Shape optimization of the type considered in this article, where the forward operator involves the inversion
of an elliptic PDE, is notoriously difficult. These problems are highly ill-posed. Consequently, there are several
papers in the literature where numerical experiments are synthesized with data assumed available throughout
the spatial domain or at least a substantial part of it, and/or where the ‘‘true solution’’ is used in the algorithm
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itself to decide when the reconstruction is satisfactory. We have avoided here both of these temptations,
because reality often does not provide for such luxury.

The data in our experiments are only provided at the domain’s boundary (occasionally in multiple sets,
though). The proposed dynamic regularization method (23) with X = R00 (or, (9) with b = 0, (27) and forward
Euler) performs very well under these conditions without consulting the ‘‘true solution’’, using a ‘‘stalling ter-
mination criterion’’ instead. We have displayed obtained reconstructions for several examples involving both a
potential problem and the classical EIT problem, the latter sometimes requiring multiple data sets. The noise
levels in our synthetic experiments are not very small.

The reconstructions are particularly satisfactory when a novel regularization term, bR4n, defined in (19), is
employed. This provides for a smooth evolution of non-flat level set functions.

Our focus has been on numerical methods that terminate reasonably fast, requiring only relatively few iter-
ations. On a typical 32 · 32 grid our MATLAB code requires a few seconds to converge. Indeed, for our better
results fewer than 20 iterations were usually sufficient. Such performance cannot be expected from methods
that require thousands of forward solves.

On the grids we have experimented with, standard direct sparse solvers are sufficiently fast. For the inverse
problem system in 2D probably this is all that is required [5,11]. An important advantage of direct methods is
that they are relatively hassle-free and easy to implement (especially in MATLAB); for instance, the dependence of
the condition number of the matrix in (29) on b is less crucial than it could be if iterative methods were utilized.

Forward problems may well require finer discretization grids, but fast iterative techniques for elliptic PDEs
are well-known. The efficient iterative solution of the inverse linear system (29) is much more challenging, and
it is needed for larger problems, especially in 3D (see, e.g., [21,19,7]). We are currently considering this latter
problem and expect to report our results in the near future.

In addition, we have demonstrated that the dynamic regularization algorithm requires no TV regularization
term and is not very sensitive to b0, which in turn is insensitive to the noise level.

We cannot reconstruct shapes which are too complex, for example shapes that have holes, using our algo-
rithm with similar ease. (This can be a very difficult task, though, as discussed towards the end of the previous
section.) Moreover, the minimal number of data sets required for a practical EIT reconstruction is unclear and
depends on the relevant true solution.

Finally, there is no full theoretical backing to our results. We hope, though, that our encouraging numerical
experiments can shed some light on and be founded in a more solid theoretical framework in the future.
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